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Abstract

In the military aerospace environment, certain repair parts are infrequently demanded, but stocked
because they are essential to maintaining a weapon system critical to the war-fighter. Because of
their sporadic demand, it is difficult to decide when to buy these items and in what quantities. As
systems become more reliable and failure rates decrease, the number of these infrequently demanded
parts is likely to grow. Earlier studies for the Defense Logistics Agency (DLA) and the Federal
Aviation Administration (FAA)—organizations that manage parts inventories for repairing complex
systems—found the Peak ordering policy the author invented significantly reduced wholesale wait-
time and backorders. Rigorous new experiments confirm the benefits of the Peak policy, and show it
can reduce retail wait-time and backorders as well. By considering the distribution of retail
backorders, or “holes,” over an aircraft squadron, we estimate the resulting reduction in the number
of aircraft down for lack of parts. We also analyze the policy’s near-term effect on inventory value
and procurement workload, showing that the Peak policy can reduce both within a few years of
policy initiation. After 5 years of development and review, the Peak policy is mature enough for
implementation. A live test is underway, and broader implementation is under consideration.

Background

For frequently demanded parts, there is a well-developed theory and set of processes for ordering that
balances the investment in inventory with customer service. Unfortunately, when parts experience only
infrequent demand, that theory breaks down, and the established processes no longer work well.

An inventory management system for a single site typically manages each item using two control
levels: an item’s reorder point (ROP), which determines when to order, and a requisitioning
objective (RO), which determines how much to order. An order is placed when assets on-hand plus
on-order decrease to or below the ROP, and the difference between the RO and current assets is the
quantity ordered. The RO is usually the ROP plus a nominal order quantity, Q, often a Wilson lot
size ("economic order quantity"). Thus Q is the quantity ordered if assets drop exactly to the ROP.




The ROP is an estimate of lead-time demand plus a safety level that protects against variability in
lead-time demand.

Safety-level computations usually treat the number of demands in a lead-time as a random variable
with a tractable theoretical probability distribution (e.g., Poisson, negative binomial, Laplace, or
normal), estimate the mean and variance, and derive expressions for expected backorders and
inventory cost as a function of the safety level. Mathematical optimization techniques are then used
to set item safety levels to balance inventory investment with expected backorders, probability of a
stockout, or system availability. ‘

This approach to optimizing ordering policies for a single site began in the 1950s (Galliher et al.,
1959), and has developed to include a great variety of policies (Silver, 1998). It also has been
extended to optimize policies across a supply chain (Kruse, 1979), account for repair actions as
well as ordering actions (Sherbrooke, 1992; Slay et al., 1996), and treat items that apply to diverse
weapon systems with distinct availability goals (O’Malley, 1983). When there is sufficient demand
data to characterize the lead-time demand distribution, but theoretical distributions do not fit well,
non-parametric techniques, such as the bootstrap method (Fricker and Goodhart, 2000), may apply.

But what happens when items experience long and irregular periods of inactivity between demands
(6 months to several years), what we call sporadic demand? For these items, the lead-time demand is
usually zero. In a previous study of more than 300,000 sporadic-demand items, the author found that
nearly 95 percent of lead-time intervals contained no demand. Forecasting lead-time demand for
these items is extraordinarily difficult, as is forecasting demand variance. That is why a theoretical
demand probability distribution is impractical—mean and variance cannot be estimated in any
meaningful way. Use of empirical demand probabilities is possible, but for many sporadic-demand
items, the data are too sparse to build a reasonable lead-time demand distribution. For example, if an
item’s only observed demands in the last 5 years comprise a demand for 8 units and another demand
for 50 units, there is no reason to believe a demand for 20 units has a probability of zero. Modemn
enterprise resource planning (ERP) systems of the commercial sector focus on frequently demanded
items; since commercial firms do not typically stock sporadic-demand items, ERPs offer no solution.

Inventory management specialists have long sought a successful approach to setting ROPs and
ROs for sporadic-demand items. Usually heuristic policies are employed; and the military services
use more-or-less arbitrary levels. Such policies fail to link inventory investment to service level,
and generally do not work well. There are more sophisticated approaches. Croston showed that,
when there is a constant probability of demand in a time interval, high fill rates can be obtained by
basing reorder points on forecasts of both the time of next demand and demand size (Croston,
1972; for a recent survey of articles on policies based on statistical forecast-based methods, see
Silver, 1998). Kruse divided an item’s population into subsets by pooling items with similar lead-
times, prices, and demand frequencies; thereby, obtaining enough demand data for empirical lead-
time demand probabilities. Kruse assigned each item subset a common ROP based on a fill rate
goal (LMI documented his method earlier; see Bachman and Bosma, 2003). Unfortunately, when
demand is as irregular as it is for DL A-managed sporadic-demand items, none of these approaches
have been shown to improve service levels (e.g., reduce customer wait-time) without significantly
increasing inventory investment.




The scope of the challenge facing DLA—setting cost-effective ROPs for sporadic-demand items—is
enormous. The agency manages nearly 1 million aviation stock numbers with sporadic demand, the
inventory of those items is valued at more than $1.5 billion and annual sales are in excess of $400
million (Bachman and Bosma, 2003). Although no one item is typically active in any given year,
sporadic-demand items experience significant aggregate activity and investment. Furthermore, the
lack of DLA parts can render critical weapon systems inoperable—an event with significant military
readiness consequences.

Over the last 5 years, the author developed the Peak ordering policy for sporadic-demand items, with
the goal of reducing customer wait-times without increasing inventory investment. The most recent
work, documented here, was accomplished with the capable support of a number of LMI employees.

Overview

The focus of this paper is on consumable parts, those deemed uneconomical to repair—when they
fail on a weapon system, they are simply replaced. The supply chain for consumable parts is
hierarchical, with the weapon system maintainer—the customer—at the end of the chain. To repair
an aviation system, the maintainer requests parts from a local supply activity, what we call retail
supply. (Retail supply belongs to the military service that owns and maintains the weapon system.)
Retail supply requisitions parts from DLA, its wholesale supply organization. In turn, DLA buys
parts from its vendors. The section “Aircraft-Level Analysis” illustrates this supply chain.

This paper describes the Peak ordering policy the author developed for DLA’s sporadic-demand
items and its potential benefits at the wholesale level and the aircraft level, where the lack of a part
may ground a weapon system. (While the focus is on aircraft items, there is nothing in this work
that suggests the results apply only to aviation). The first two sections describe DLA’s current
policy—the baseline—and the Peak policy. The paper then describes the simulation analyses we
performed at the wholesale level to compare investment, customer service, and procurement
workload for baseline and wholesale policies. The fourth section discusses the near-term effect of
converting from DLA’s current practice to the Peak ordering policy. The paper then describes
simulations of the Peak policy’s effect on part shortages at the aircraft level. The conclusion dis-
cusses the status of live testing.

Baseline and Peak Policies

Inventory management systems that distinguish between items with more regular demand and those
with sporadic demand typically use a three-part policy. One part is an ordering policy for
replenishment items (i.e., those replenished regularly) with statistical forecast-based ROPs and ROs.
The second part is an activity threshold, typically set in terms of historical requisition frequency and
quantity, which separates replenishment items from sporadic-demand items. Part three is a heuristic
ordering policy employed for items with activity levels below the threshold.

DLA separates its replenishment items from its sporadic-demand items (which it refers to as numeric
stockage objective [NSO] items), with an activity threshold that is based on last year’s demand. If an
item experiences at least 4 requisitions and at least 12 units demanded in the trailing year, DLA uses
areplenishment policy that treats lead-time demand with a Laplace distribution. The agency uses a
smoothed forecast of lead-time demand to estimate the mean and a smoothed average of absolute
forecast errors to estimate the variance. It also employs a modified Wilson order quantity, and




computes each item’s expected backorders as a function of the item’s order quantity and safety level.
DLA then employs Lagrange multiplier optimization to set safety levels across items; thus
minimizing the inventory cost required to meet an expected backorder constraint (Presutti and Trepp,
1970).

For NSO items (i.e., items with demand activity below the threshold), DLA uses a heuristic policy
that sets the RO to the demand quantity in the trailing year and the ROP to half the RO. This policy
does not link inventory cost to service level, however; and special rules apply to small subsets of
items (Bachman and Bosma, 2003), which are not considered here. Items also may migrate between
replenishment and NSO status quarterly.

The Peak policy changes the baseline policy in two ways:

e Itintroduces a new activity threshold between sporadic demand and replenishment, as
well as a new way to apply the threshold. Setting this threshold properly is the key to
improving service levels with the Peak policy while controlling inventory value
(Bachman and Bosma, 2003).

e It introduces a new ordering policy for the sporadic-demand segment of the item
population. In the context of the Peak policy, we no longer call these NSO items to
emphasize the new segmentation.

The new threshold generally results in fewer replenishment items and more sporadic-demand items
than the current threshold allows, but there is no change in the ordering policy for replenishment
items.

The Peak policy utilizes quarterly demand data, as does DLA’s current policy. We define an item’s
demand frequency in a time interval as the fraction of quarters with demand, irrespective of quantity.
For example, if an item has 2 quarters with demand in a 5-quarter interval, the demand frequency is
0.4—the demand in one of those quarters may be for 1 unit, and in the other it may be for 100 units.
The Peak policy relies on an activity history for each item, which is created from the quarterly
demand history that DLA already maintains as follows: Each quarter’s demand quantity is replaced
by one when that quantity is positive; demand quantities of zero are unchanged. Each quarter, the
policy applies a single exponential smoothing forecast (Brown, 1963; Sherbrooke, 1992) to this
activity history in order to forecast future demand frequency.

When an item’s forecasted demand frequency meets or exceeds the activity threshold, DLA’s
replenishment policy applies. If the frequency forecast is below the threshold, the new ordering
policy applies. This decision is illustrated in Figure 1.

Using an item’s quarterly history of demand quantity (DLA maintains at least 10 years’ worth), we
define its Peak demand as the maximum quarterly demand in a trailing K-year period. This period is

called the look-back (see Figure 2). The look-back may vary by 1tem population, but it is constant
across items within a population.
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Figure 1. Using Frequency Threshold to Determine Ordering Policy
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Figure 2. Computing Peak Demand

An item’s ROP is the product of a price-based multiplier and its Peak demand, where higher
multipliers apply to inexpensive items and lower multipliers apply to more expensive ones. For
example, an item with a unit price of $2.59 might use a multiplier of 5.0, but an item with a unit
price of $3,100 might use a multiplier of 0.3—in other words, we can afford a greater level of
protection against backorders for the first item than we can for the second. The policy employs a set
of price-based order quantities, in which cheaper items receive larger quantities than more expensive
items, and sets an item’s RO to its ROP plus its order quantity. Larger order quantities for
inexpensive items allow us to avoid excessive administrative costs and workload that would result
from frequent procurements. Assets on-hand and on-order are compared to the ROP in a continuous
review. When assets are at or below the reorder point, Peak policy orders enough to bring assets up
to the RO.

Peak Policy Development

With the possible exception of its frequency forecast, the Peak policy may appear simple; however,
it is not at all trivial (and it was unclear at the policy’s inception whether it was even possible) to
find values of control parameters that achieve a high level of service without increasing inventory
investment or procurement workload. This paper shows that one can make three-way tradeoffs
between customer wait-time, inventory investment, and the number of procurement actions for a
wide variety of sporadic-demand item populations. The process is iterative, and is made possible
through the use of LMI’s Financial and Inventory Simulation Model (FINISIM).




FINISIM provides three modes in which to generate item demand:
e A replay of demand history (retrospective simulation)
e Generation of synthetic demand patterns using empirical demand distributions

e A Poisson distribution.

It models the response of the inventory and related financial systems to demand patterns,
emulating a wide variety of operating policies. In particular, FINISIM emulates DLA’s current
ordering policies, including item migration between NSO and replenishment classification over
time and alternative policies tailored for sporadic demand. FINISIM’s event processing
algorithms are specifically engineered for rapid analyses when events are sparsely distributed
over time. In such cases, FINISIM is as much as two orders of magnitude faster than other
simulations. This speed is crucial in analyzing numerous alternative policies and finding values
of control parameters that achieve a particular performance tradeoff. The model’s customer
service metrics include average customer wait-time, average backorder duration, number of
backorder occurrences, average outstanding backorders, and both unit and requisition fill rates.
Financial and workload metrics include annual dollars spent on procurements, number of
procurement actions, and average value of on-hand inventory.

We use FINISIM’s empirical distribution mode to develop Peak policies. In this mode the model
generates long synthetic demand patterns (e.g., 200 quarters, or 50 years) in which the relative
frequency of demands of different sizes, including zero, is close to the frequencies in the actual
item demand history. For sporadic-demand items, these demand patterns are too sparse to build a
realistic lead-time demand distribution; however, the demand patterns help adjust an ordering
policy to respond to a demand pattern with a given frequency of zero demands and a given
maximum demand.

There is one limitation of this approach, as far as projecting policy performance is concerned: Each
item’s generated demands form a stationary stochastic process. That is, there is the same set of
probabilities for the number of units demanded at each point in time. A rigorous test of the Peak pol-
icy is discussed later in the section “Wholesale Analysis.”

Using FINISIM to test numerous Peak policies on more than 10 item populations, each with 3,000~
15,000 items, led to the conclusion that the best smoothing constant for the frequency forecast is 0.2,
and the most cost-effective threshold is 0.6. Although the Peak policy was originally conceived to
apply to items with gaps in demand of a year or more, this result shows the policy actually performs
well on items with demand in as many as three out of five quarters. This result appears to be
independent of the DLA item population; however, other control parameters must be tuned to the
item population to achieve a given three-way performance tradeoff.




Although this process varies with the item population, it generally proceeds as follows:
1) Rank all items by unit price to determine the 25th, 50th, and 75th percentile prices.

2) Assign initial Peak multipliers of 1 for each of the resulting price quartiles, and set all order
quantities to 1, as well. Call this policy Peak 1.

3) Use FINISIM to estimate the resulting on-hand inventory value, customer wait-time, and
number of procurement actions for the item population.

4) Compare the performance of Peak 1 with FINISIM’s assessment of baseline policy.

5) Stop here if the on-hand inventory value from Peak 1 is no more than that of the baseline,
the customer wait-time is significantly lower than that of the baseline, and the average
number of procurement actions per year is close to the baseline. This usually is not the
case; more often, one of the three metrics is not within the desired range (the behavior is
dependent upon a combination of item demand patterns and prices.)

6) If the wait-time reduction is not large enough, but the inventory value is lower than the
baseline, use a peak multiplier of 2 for the bottom 50th price percentile and leave the top
50th price percentile with a multiplier of 1. If wait-time reduction is significant, but the on-
hand inventory value is too high, try a multiplier of 1 for the bottom 50th price percentile and
a multiplier of 0.5 for the top 50th price percentile. In either case, call this policy Peak 2.

7) Use FINISIM to compare Peak 2 results with baseline policy. If the metrics are in range,
stop; if not, introduce new multipliers (e.g., 4, 2, 1, or 0.5) for all price quartiles.

8) Continue refining the values of multipliers in this way until there is a clear reduction in
customer wait-time and the inventory value is less than that of the baseline.

9) With order quantities of 1, procurement actions often exceed the baseline. If so, introduce
price-based order quantities, with larger quantities for the lower price quartiles (e.g., 20, 4, 2,
or 1). Because this increases on-hand inventory value, reduce the Peak multipliers to
counteract the effect.

10) Follow another iterative process to obtain order quantities (and reduced multipliers) that
yield procurement actions that are no higher than the baseline, an on-hand inventory value
that is no more than the baseline, and a significant reduction in customer wait-time.

To accommodate an especially high demand for the least expensive items, add a bottom 5th

_percentile price category; if investment is driven heavily by the items with the highest price, add a
separate category for items above the 95th price percentile. Although the success of the above proc-
ess has not been proven mathematically, it has worked for a wide variety of item populations. Peak
policies that result from this process are very efficient in terms of customer wait-time per dollar
value of inventory, but we cannot claim they are optimal.

Wholesale Analysis

In developing a Peak policy for an item population, FINISIM projects certain levels of customer
wait-time, inventory value, and procurement actions. Because these projections are based on
synthetic item demands (as described in the previous section), it was appropriate to construct a
rigorous experiment to compare Peak and baseline policies by taking long item-demand histories,
developing a Peak policy based on an initial segment of those histories, and assessing it based on the




remaining part of the histories. The demand data used to develop Peak policies would thus have
different demand probabilities from the demands in the subsequent assessment period. If a policy did
well, it would not be because of bias in the assessment method.

The author selected populations of DLA-managed items that apply to five critical weapon systems:
the AH-64 Apache, E-2C Hawkeye, E-3 Sentry, C-5 Galaxy, and F/A-18 Hornet. We used 9-year
quarterly item demand histories for these items, beginning with the first quarter of 1995. In some
of the populations, aggregate demand increased over time; in others, it decreased. Items were
limited to those with a unique application to each weapon system so it would be clear which
weapon system would benefit from any improvement in supply performance. From each
population, a sporadic demand subset was extracted, consisting of items that experienced demand
in no more than 6 out of the earliest 10 quarters of their demand histories. Each sporadic-demand
item population is referred to by the name of the associated weapon system. For example, “C-5
items” designates the sporadic-demand items that apply to the C-5.

For each of the item populations, we used the first 4 years of demand history and FINISIM to
develop several Peak policies, each with a different set of objectives. One policy, “closest cost
match,” matched the dollar value of on-hand inventory with that of the baseline policy while
decreasing customer wait-time, increasing fill rates, and keeping procurement actions no higher than
the baseline. Another Peak policy, “relax orders constraint,” had the same objectives, except it
allowed for procurement actions to exceed the baseline. The policy “closest performance match”
sought to keep customer wait-time and fill rates close to the baseline while reducing both inventory
value and procurement actions. The policy “high performance” had the goal of reducing wait-time
increasing fill rates, and allowed inventory value and procurement actions to increase in order to
boost service levels. A “compromise” Peak policy sought to balance improvements in wait-time with
reductions in inventory value and procurement actions.

We created a set of Peak policies that offered a three-way tradeoff between improved service levels
(i.e., shorter wait-time and higher fill rates), reduced inventory value, and reduced procurement
actions, based on the first 4 years of demand histories. Generally one or two metrics could be
improved while constraining a third; however, not every policy option was available across all five
populations. As always the ability to develop a particular policy depended upon the joint distribution
of item prices and demands in a population.

To assess Peak policies, we performed retrospective simulations with FINISIM. Each assessment
employed the baseline policy from the first quarter of 1995 through the last quarter of 1998—we
made no policy change during the development period. We then continued in two ways:

e Start using a Peak policy at the end of the first 4 years, allow 2 years for simulated
procurements to arrive, and then measure performance in the last 3 years.

e Continue using DLA’s baseline policy to the end of the 9-year period, measuring
performance in the last 3 years.

Figure 3 illustrates our experimental design.
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Figure 3. Experimental design

Figure 4 illustrates the results for Peak policies developed for E-2C items, which was a “middle-of-
the-road” case in terms of improvement over the baseline. Each policy name (shown at the top of the
chart) refers to the objective used to develop the Peak policy. The grouped bars show performance
for each Peak policy according to four metrics. Each metric is the percentage difference between the
Peak and baseline policies’ performance, based on averages over the 3-year assessment period.
Lower numbers are better for the first three metrics: wait-time, number of orders placed, and value
of on-hand inventory. Higher numbers are better for the fourth metric: unit fill rate. Baseline policy
performance, in absolute terms, is shown to the right of each chart.

Closest cost match  Relax orders constraint High performance

20.0%

10.0%

Baseline data

Wait time = 23 days
# orders = 667/year
$ on hand = $6.0M
Unit fill rate = 72%

0.0% A

-10.0%

-20.0% -

Difference from baseline

-30.0%

-40.0%

-60.0%

| B Wait time (days) W # of orders placed [J Average on hand inventory ($) & Unit fill rate |

Figure 4. Assessment Results for Peak Policies Developed for E-2C Items

The first Peak policy, “closest cost match” produced a nearly 30 percent reduction in wait-time, and
anearly 20 percent reduction in procurement actions, relative to DLA’s current policy. Although it
was developed to match inventory value with the baseline, the assessment demonstrated an inventory
value reduction of approximately 5 percent, which was better than expected.

As expected, the reduction in procurement actions in the second option, “relax orders constraint,”
was less than that of the first Peak policy. Allowing more procurement actions than the first Peak
policy resulted in a slightly greater reduction in inventory value than the first policy. Wait-time
reduction was still about 25 percent, but it was not as large as that of the first option. So, relaxing the
constraint on the number of procurement actions did not produce a significant benefit in the other
two metrics relative to the first Peak policy.




The “high performance” Peak policy, developed to increase performance significantly, achieved its
. objective—wait-time was reduced about 45 percent, the number of procurement actions declined, and

the value of inventory increased by a little more than 10 percent. Our results indicated a range of Peak

policies—each emphasizing different performance metrics—are available for the E-2C items.

Figures 5 through 8 illustrate the Peak policy assessment results for the other four weapon systems.
The policies shown are only illustrative; many other policies could be developed.
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Figure 6. Assessment Results for Peak Policies Developed for C-5 Items
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Figure 7. Assessment Results for Peak Policies Developed for E-3 Items

Relax orders
Compromise Reduce costs constraint High performance
20.0%

10.0%

2 Baseline data
R Wait ime = 30 days
# orders = 2,630/year
$ on hand = $27.4M
Unit filt rate = 68%

0.0% -

-10.0% A

-20.0%

Difference from baseline

-30.0%

-40.0%

]E} Wait time (days) B # of orders placed DO Average on hand inventory ($) @ Unit fill rate |

Figure 8. Assessment Results for Peak policies Developed for F/A-18 Items

Assessments of item populations generally demonstrate that policies behave in a manner consistent
with their objectives.

e Peak policies developed to reduce wait-time did so in the assessments.
e Peak policies that sought to reduce procurement actions achieved that goal.

e Policies that attempted to reduce inventory value kept it at or below the value produced
by the baseline policy.

For all item populations, we found policies that offered a nice compromise among the competing
objectives: reducing wait-time, reducing the number of procurements, and reducing inventory value.




We performed separate analyses to test the threshold condition for item migration. The goal was to
determine if there were any negative effects (for example, a large increase in inventory value) if
we started with the full item populations (rather than populations with initial demand frequency
that did not exceed 0.6) and let the Peak policy’s threshold control item migration between
replenishment and sporadic demand. These separate analyses followed the same timeline for
policy conversion and assessment as those shown in Figure 3. We observed no negative effects
from allowing the new threshold and the frequency forecast decide when Peak ordering should ap-
ly.

%a}{(en together, these results confirm the Peak policy’s benefits. And they show that, for the first
time, DLA can make three-way performance tradeoffs for sporadic-demand items.

Near-Term Impact

Assessment results in the previous section were 3-year averages, taken over a period that starts
after a Peak policy has been in effect for 2 years. It is natural to ask, “What happens to inventory
value and procurement actions when policy conversion occurs?” Short-term increases in these two
measures are inevitable when parts are purchased according to a new ordering policy. After all,
DLA is purchasing a different mix of items than what the previous policy has “put on the shelf.”

We used FINISIM to analyze “compromise” policies considered in the previous section, projecting
how inventory value and procurement actions change over time. Figures 9 and 10 illustrate the on-
hand inventory value and the number of procurement actions by year for the compromise policy
developed for C-5 items.

10%

8%

6%

4%

2% A

Difference from baseline

0% -

-2%

~4%

Yr1 Yr2 Yr3 Yr4 Yrs

(8 Compromise Peak policy|

Figure 9. Value of On-Hand Inventory by Year for C-5 Compromise Peak Policy
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Figure 10. Number of Procurement Actions by Year for C-5 Compromise Peak Policy

As seen in Figure 9, on-hand inventory was up only slightly over the baseline in year 1. This
reflects many procurement lead-times of more than a year. By year 2, inventory value was up
significantly, which reflects the arrival of most material ordered at policy conversion. Moving
from year 2 to year 3, the value of inventory declined—sales exceeded buys for the first time. This
continued as we moved from year 3 to year 4, when inventory value fell below the baseline.
Inventory remained below the baseline in year 5, which reflects the purchase of a better mix of
spare parts—more of what is bought sells. The C-5 items served as a “middle case.” With some
weapon systems it took longer for the inventory value to begin declining; with others it began
sooner.

Figure 10 illustrates the expected surge of procurement actions in year 1, as the new policy
triggered the buys necessary to produce a new mix of inventory. In year 2 and thereafter, annual
procurements were below those of the baseline policy. So, the increase in procurement workload
was one-time event, and was consistent across the item populations. Policies developed by LMI
for DLA moderate the year-1 procurement workload and spending.

Aircraft-Level Analysis

The wholesale analysis complete, we turned to examining the effect of changing the wholesale
ordering policy on parts shortages at the end of the supply chain—the aircraft. An aircraft rendered
inoperable (“down”) for lack of a part is said to be not mission capable due to supply (NMCS); and
the occurrence of a backorder, or “hole,” at the aircraft level is referred to as an NMCS incident. We
proved that using the Peak policy at the wholesale level could reduce NMCS incidents.

Because personnel at the aircraft level often resolve an NMCS incident by cannibalizing a part from
other weapon systems or finding other workarounds, we could not claim an increase in actual
readiness; however, it is DLA’s job to make the required parts available, not to assume its customers
will work around parts shortages. For this reason, it was appropriate to measure the effectiveness of
the Peak policy through the increase in aircraft availability (the percentage of the fleet not down for
lack of a part), ignoring workarounds. We called this “no-cannibalization availability,” although
other workarounds are discounted as well.




We used populations of DLA items that apply to three types of aircraft: the Navy’s E-2C and
F/A-18, and the Air Force’s E-3. For the first two aircraft, we used items the Navy had identified as
first indentures (items removed directly from the aircraft, as opposed to items removed from a
reparable component). First indenture items served as proxies for items that could ground the air-
craft. For the E-3, we used items that grounded the aircraft at some point in the past. This analysis
was not limited to items that had a unique application to the subject aircraft—we included items
common to multiple weapon systems. Item populations, and the Peak policies developed for them,
differ from those discussed earlier in “Wholesale Analysis,” in which the goal was to show we could
produce a three-way performance tradeoff.

From these three item populations, we built wholesale demand histories and extracted sporadic-
demand items (i.e., items with demand in no more than 6 out of the first 10 quarters). We then
developed Peak policies for each item population using the first 5 years of quarterly item demand
histories (from the beginning of 1995 through end of 1999). The goal of these policies was to
significantly reduce wholesale customer wait-time, but keep inventory value and procurement
actions near the baseline.

Using aretrospective simulation, we replayed demands for the first 5 years, employing the baseline
policy. We activated the Peak policy at the start of 2000, and allowed it to run for 2 years so that
most of the assets from simulated procurements could arrive. We passed each items’ simulated
wholesale assets (on-hand, due-in from procurement, and backorders) and wholesale levels (ROP
and RO) as of the end 0f2001 to a multi-echelon supply chain simulation (a version of FINISIM that
projects backorders at the aircraft level). Another set of final wholesale assets and levels, which were
produced using the baseline policy from the beginning of 1995 to the end 0f 2001, was also passed to
the multi-echelon FINISIM for comparison. Figure 11 illustrates the experimental design.

Simulation to . . .
develop Peak policy Simulate policy Multi-echelon
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} = i | > time
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Figure 11. Experimental Design for Aircraft-Level Analysis
To examine the effect of Peak policies on DLA’s Navy customers, we chose four aircraft carriers,

two from the Atlantic Fleet and two from the Pacific Fleet. The carriers and their associated aircraft
deckloads (for 2002) were

e USS George Washington (4 E-2Cs, 36 F/A-18s),
e USS John F. Kennedy (4 E-2Cs, 24 F/A-18s),

e USS Kitty Hawk (4 E-2Cs, 36 F/A-18s), and

e USS John C. Stennis (4 E-2Cs, 36 F/A-18s).




We performed eight multi-echelon simulations to examine the effect of Peak policies on the
customer, one for each ship-aircraft combination.

For Air Force customers, we considered the three permanent Air Force bases for the E-3:
e FElmendorff AFB

e Kadena AFB
e Tinker AFB.

Of these, only Tinker AFB had significant demand for DLA-managed sporadic-demand items in

2002, so we only performed a multi-echelon simulation for that base. Tinker was assigned 28 E-3
aircraft in 2002.

We analyzed backorders at the aircraft using a daily, multi-echelon simulation for 2002. The
lowest echelon of the supply chain was the ultimate customer for parts in our item populations—
an aircraft fleet (i.e., one or more squadrons). The next echelon up was the local supply activity,
or retail supply. Above that, we modeled wholesale supply, with the top echelon DLA’s vendors

(i.e., suppliers), which we treated as a single entity. Figure 12 illustrates the simulation for the
Navy case.

Simulations for the other aircraft-ship combinations were similar. For the E-3, Tinker AFB replaces
the aircraft carrier in Figure 12. At the retail level (Tinker AFB), other customers include demands
from depot activities as well as other aircraft based at Tinker AFB. At the DLA level, other DLA
customers represent wholesale demands from all locations other than Tinker.
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Figure 12. Structure of Multi-Echelon Simulation for Navy Customers

Consider the case of the E-2C squadron on the Jokn C. Stennis. We used Navy maintenance data for
parts required to replace items removed directly from the E-2C to model requests on the ship’s
supply activity (from aircraft to aircraft carrier in Figure 12). We also used Navy maintenance data
to model demands from other repair activities competing for the same parts (from other on-carrier
customers to aircraft carrier in Figure 12), to repair another aircraft type on the same carrier, for
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example. We emulated the Navy’s ordering policy using their levels data; so, when assets were low
enough, FINISIM generated a simulated order from the carrier to DLA. We modeled competing
wholesale demand, from customers other than the Stennis, using DLA requisition history data (from
the other DLA customers to DLA in Figure 12.) FINISIM then generated simulated demands for
parts from DLA to its vendors. We measured performance at the aircraft, aircraft carrier and DLA
levels.

We assessed the effects of Peak policies on the aircraft in two ways:

e We projected the average number of aircraft down for lack of parts at a location by
simulating the average number of outstanding backorders at the aircraft level, and
considered the resulting holes as uniformly distributed over the aircraft at that location.
Any aircraft with at least one hole was down for a part (it was NMCS).

¢ We used our no-cannibalization availability formula (shown in Equation 1) to estimate
the probability that a randomly chosen aircraft was available at the location.
d BO,
411
where 4, is availability, the percentage of the fleet not down for a part, (Equation 1.)
N is the number of parts, BO, is the number of backorders for part i,
and NAC is the number of aircraft.

Each factor in the product is our estimated probability that an aircraft is not lacking a particular part.
Treating holes for different parts independently, the product of all such factors is the probability of
an aircraft not being down for any of the subject parts.

For the F/A-18s on two carriers, changing from the baseline to Peak policy at the wholesale level
reduced part shortages and increased no-cannibalization aircraft availability. For the George
Washington, we reduced average outstanding backorders from 6.35 to 5.36. Distributing the
resulting holes uniformly over the 36 aircraft, we had an average of 6 aircraft down with DLA’s
baseline policy; we had an average of 5 aircraft down with the Peak policy, and the no-
cannibalization availability increased by 3 percent (i.e., the difference between availability with the
baseline policy and availability with the Peak policy, where each is computed using Equation 1). On
the Kennedy, the Peak policy reduced the average outstanding backorders from 3.50 to 1.62—two
fewer aircraft down due to the lack of a part—and increased availability by 7 percent.

We observed no change in backorders at the aircraft level for F/A-18s on the other two carriers or
E-2Cs on any carrier (no positive or negative effects). This was expected; after all, worldwide
demand for the parts in question is sparse, even over several years. This means that, at any given
customer location, only a few parts are active in a single year. Although the Peak policy makes parts
more available for a population of items, taken as a whole, it does not improve performance for
every item—it may not help the few active parts at one customer location. Even if the Peak policy
increases availability for certain parts at the wholesale level, there is no guarantee any particular
customer will benefit in a 1-year period—other customers may get the parts first, which leaves no
parts for the customer analyzed.




For the Air Force case, the Peak policy reduced average outstanding E-3 backorders from 29.73 to
27.40—a reduction of two holes. (This excludes one part with extraordinarily large demand in
2002; with this part included, average outstanding backorders would have been reduced from 104
to 85). Using the baseline policy, we had 30 holes on average. Distributing these holes uniformly,
all 28 aircraft were down (26 aircraft have 1 hole and 2 aircraft have 2 holes). With the Peak
policy, the average number of holes was 27.4, so we can anticipate either one less aircraft down or
no improvement, depending on whether the 27.4 represents 27 holes or 28 holes. In either case we
reduced part shortages at the aircraft-level (as we saw in two of the F/A-18 experiments) and no-
cannibalization aircraft availability, as defined by Equation 1, increased by 8.6 percent.

From this analysis, we concluded the Peak policy decreased the number of aircraft down for lack of
sporadic-demand DLA parts. In two cases it was a decrease of one or two aircraft; and in a third
case, it was one less aircraft down, but only for about half the time. In no case did the Peak policy
increase the number of aircraft down or parts shortages.

We believe the benefit of the Peak policies is understated, because we did not capture the effect of
making DLA-managed parts more available for reparable item repair, which could reduce holes for
those items, as well.

Our analysis is significant in another way: To the best of our knowledge, these were the first
experiments to model the effects of DLA wholesale supply policy on supply-oriented readiness
measures using realistic customer demand. Modeling demand properly is critical to accurately
projecting performance. In previous LMI experiments, wholesale backorders can be too low (by
as much as a factor of three) if theoretical demand probabilities, rather than empirical demand
data, are used. :

Live Testing

In February of 2004, the DLA’s Defense Supply Center, Richmond (DSCR), asked LMI to develop a
Peak policy to improve support for 16,000 sporadic-demand items that apply to 15 key aircraft and
engines. A joint effort involving DLA and the military services selected specific items for various
fixed-wing aircraft (A-10, E-2, E-3, EA-6B, C-5, F-15, F/A-18, and S-3), helicopters (AH-64, CH-
47, HH-60G, and UH-60), and engines (F100 series, F404, and TF-39).

The Peak policy we developed is projected to reduce customer wait-time by 35 percent by year 2
and by 60 percent in the longer term, all while staying within DSCR’s guidelines for initial
spending and number of procurement actions. Working with DSCR, we produced a variant of the
policy that could be implemented within DLA’s ordering system, with similar performance and
cost parameters.

Starting in March 2004, DSCR began to implement this revised Peak policy, electing to test it on
C-5 items. Because many items have procurement lead-times in the range of 1 to 3 years, we expect
results of this test to begin emerging by late summer of 2005. Headquarters DLA is also reviewing
the Peak policy for possibly wider implementation.




Conclusion

We developed the Peak ordering policy for items with sporadic-demand patterns, and a simulation
model that enables us to make three-way tradeoffs between the resulting service level, value of
inventory, and procurement workload. The ability to make tradeoffs—long available for more
frequently demanded items—is new for sporadic-demand items. We showed this capability enables
us to produce Peak policies that reduce wholesale customer wait-time by 20 to 45 percent while
maintaining or reducing wholesale inventory value and procurement actions. We further dem-
onstrated that the Peak policy can reduce parts shortages at the weapon system level and reduce the
number of aircraft down for lack of a part.

After 5 years of development and review, the Peak policy is now mature enough for implementation.
A live test is underway, and broader implementation is under consideration.

Acknowledgements

The author wishes to thank DLA’s Aging Aircraft Program Office for supporting this research;
DLA’s Office of Operations Research and Resource Analysis (DORRA) for providing wholesale
supply data; the Naval Air Systems Command (NAVAIR) for providing Navy maintenance data; the
Naval Inventory Control Point, Philadelphia, for Navy retail supply data; and the Air Force Logistics
Management Agency (AFLMA) for Air Force retail supply and maintenance data. The author also
wishes to thank Carol DeZwarte of LMI for checking the data and performing many of the

simulation analyses. Production of this manuscript was partially supported by the LMI Research In-
stitute.

References

Bachman, T.C., and Bosma, L.F., Defense Logistics Agency’s Numeric Stockage Objective
Policy (Report SVD10T4). McLean VA: LMI, 2003.

Brown, R.G., Smoothing Forecasting and Prediction. Englewood Cliffs, NJ: Prentice Hall, 1963.

Croston, J.D., “Forecasting Stock Control for Intermittent Demands,” Operations Research
Quarterly, vol. 23, no. 3 (1972): 289-303.

Fricker, R.D., and Goodhart, C.A., “Applying a Bootstrap Approach for Setting Reorder Points
in Military Supply Systems,” Naval Research Logistics, vol. 47, no. 6 (2000): 459—478.

Galliher, H.P., Morse, P.M., et al., “Dynamics of Two Classes of Continuous Review Inventory
Systems,” Operations Research, vol. 7, no. 3 (1959).

Kruse, W.K., An Exact N-Echelon Inventory Model: The Simple Simon Method (Technical
Report 79-2). U.S. Army Inventory Research Office, 1979.

O’Malley, T.J., The Aircraft Availability Model: Conceptual Framework and Mathematics.
McLean, VA: LMI, 1983.

Presutti, V.J., and Trepp, R.C., “Much Ado About Economic Order Quantities (EOQ),” Naval
Research Logistics Quarterly, vol. 17, no. 2 (1970).

Sherbrooke, C.C., Optimal Inventory Modeling of Systems: Multi-echelon Techniques. New
York: Wiley, 1992.




Silver, E.A., Pyke, D.F., et al, 1998. Inventory Management and Production Planning and
‘ Scheduling, Wiley, New York.

Slay, F.M., Bachman, T.C., et al., Optimizing Spares Support: The Aircraft Sustainability Model,
(Report AF501MR1). McLean, VA: LMI, 1996.




